Analyzing Impossible Images

Steve Seitz University of Washington

Computational Photography Symposium May 23, 2004

Imaging Breakthroughs

- xray, ultrasound, MRI, etc.

Imaging Desiderata

Analyzing real images is a pain

- occlusions
- clutter
- shading
- focus
- fidelity

Impossible images don't have such problems

• can computational imaging make these problems go away?

Removing Occlusions

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

<u>الله الإسكاني و</u> يعدي مسي مسي <mark>التل</mark> ي <u>وا</u>
by David Dewey

Open Questions

How much visibility can we get? • sensor design

Many possible projections

How do we process these images?

Images by Ward et al., SIGGRAPH 88

Cancellation Operators

Recursively define other operators

 $(I - C^{1})$

- gives interreflected light
- $C^2 = C^1 (I C^1)$ - gives second bounce of light
- $$\begin{split} C^k = C^1 (I C^1)^{k\text{-}1} \\ \text{gives } k^{\text{th}} \text{ bounce of light} \end{split}$$

Inverse ray tracing!

How to compute C¹

Simplified case

- Lambertian reflectance and fixed viewpoint
- L_{in} and L_{out} are 2D
- Can capture T by scanning a laser

 $\mathbf{C}^1 = \mathbf{T}^1 \mathbf{T}^{-1},$ where \mathbf{T}^1 is a diagonal $n \times n$ matrix containing the reciprocals of the diagonal elements of \mathbf{T}^{-1} .

Collaborators on Interreflections

Yasuyuki Matsushita Kyros Kutulakos (MSR Asia) (U. Toronto)

S. M. Seitz, Y. Matsushita, and K. Kutulakos, "A Theory of Inverse Light Transport," Microsoft Technical Report MSR-TR-2005-66, May 2005.

Conclusions

Impossible images

- no occlusions, no interreflections
- Better sensing techniques
 - can they solve all analysis problems?
 - shape
 - tracking
 - recognition

What other kinds of "impossible" images do we want?