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Contributions

- Robustness: Formulates synthesis as global energy minimization
- Quality: Comparable to [Kwatra03], while supporting constraints also
- Efficiency: Significant performance increase over previous work
- Addresses large search spaces in graphcut minimization 

CGS run on artistic filtering example from [Hertzmann01]
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Problem

- Texture synthesis, while powerful, is unpredictable and ill-defined
- Goal: Robust, controllable texture synthesis
- Challenges:
  - How does a user control synthesis?
  - How do we define and measure quality?
- Applications: image analogies, detail synthesis, texture creation for games
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Solution - CGS

- Related work:
  - Constrained synthesis: [Hertzmann01] [Efros01] [Ashikhmin01] [Schödl02]
  - Graphcut Textures: fast, high-quality unconstrained synthesis [Kwatra03]
- Approach: Add constraints to graphcuts
- Insight: Leverage unused term of graphcut minimization framework
- Simultaneously optimize constraint match and texture seamlessness
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Final Algorithm

- Step 1: Find worst neighborhood of O
- Step 2: Look up corresponding neighborhood in C
- Step 3: Identify set of potential matching patches in S
- Step 4: Integrate best match into O using graph mincut with E
- Termination condition: Loop until no improvement

Measure of Quality

- Constraint match: compare neighborhoods N in constraint C and output O
- Texture seamlessness: difference between adjacent pixel pairs [Kwatra03]
- Sum over all neighborhoods and pairs: 

∑
N∈O

A(C(N),O(N))︸ ︷︷ ︸+ ∑
(p,q)∈O

M(p,q,O)︸ ︷︷ ︸
Agreement Cost A Seam match cost M

+

Constraint Match Texture Seamlessness
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Setting up Graph Mincut

- Graphcuts cannot be applied to A since neighborhoods contain multiple patches

- Instead, use A’: assume neighborhood only contains center pixel‘s patch

- Works well due to simultaneous optimization of seam and neighboring A’ costs

∑
p∈O

A′(C(N(p)),Pp(N(p)))+ ∑
(p,q)∈O

M(p,q,O)

Final Objective Function E
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Texture-by-Numbers

Texture Transfer
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(iii) CGS (iv) Image Analogies (v) Image Quilting
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Detail Synthesis w/ Multiple Constraints
Novel Application:
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