
Constrained Graphcut Synthesis
Ganesh Ramanarayanan and Kavita Bala

Cornell University

R
ES

U
LT

S
O

V
ER

V
IE

W

Contributions

- Robustness: Formulates synthesis as global energy minimization
- Quality: Comparable to [Kwatra03], while supporting constraints also
- Efficiency: Significant performance increase over previous work
- Addresses large search spaces in graphcut minimization

CGS run on artistic filtering example from [Hertzmann01]

Output O

Constraint C

Source S

Problem

- Texture synthesis, while powerful, is unpredictable and ill-defined
- Goal: Robust, controllable texture synthesis
- Challenges:
 - How does a user control synthesis?
 - How do we define and measure quality?
- Applications: image analogies, detail synthesis, texture creation for games

Output O

Sources S

Solution - CGS

- Related work:
 - Constrained synthesis: [Hertzmann01] [Efros01] [Ashikhmin01] [Schödl02]
 - Graphcut Textures: fast, high-quality unconstrained synthesis [Kwatra03]
- Approach: Add constraints to graphcuts
- Insight: Leverage unused term of graphcut minimization framework
- Simultaneously optimize constraint match and texture seamlessness

Output O
Constraint C

Sources S

A
LG

O
R

IT
H

M

Final Algorithm

- Step 1: Find worst neighborhood of O
- Step 2: Look up corresponding neighborhood in C
- Step 3: Identify set of potential matching patches in S
- Step 4: Integrate best match into O using graph mincut with E
- Termination condition: Loop until no improvement

Measure of Quality

- Constraint match: compare neighborhoods N in constraint C and output O
- Texture seamlessness: difference between adjacent pixel pairs [Kwatra03]
- Sum over all neighborhoods and pairs:

∑
N∈O

A(C(N),O(N))︸ ︷︷ ︸+ ∑
(p,q)∈O

M(p,q,O)︸ ︷︷ ︸
Agreement Cost A Seam match cost M

+

Constraint Match Texture Seamlessness

Output O Seams

Constraint C

Output O

Setting up Graph Mincut

- Graphcuts cannot be applied to A since neighborhoods contain multiple patches

- Instead, use A’: assume neighborhood only contains center pixel‘s patch

- Works well due to simultaneous optimization of seam and neighboring A’ costs

∑
p∈O

A′(C(N(p)),Pp(N(p)))+ ∑
(p,q)∈O

M(p,q,O)

Final Objective Function E

A

A‘
P

1

P
1

P
2

center
pixel p

N

Output O patches

N in output O

N in patch P
1
 of center pixel p

Texture-by-Numbers

Texture Transfer

(iii) CGS
(ii) Constraints C

1
, C

2

(i) Source S
1

(scaled),

mapped sources Q
11

, Q
12

(closeup of C
1
)

(i) Source S

(ii) Constraint C

Nose zoom in Nose zoom in

(iii) CGS (iv) Image Analogies (v) Image Quilting

Nose zoom in

(iii) CGS (iv) Image Analogies
(ii) Constraint C

(i) Source S,
mapped source Q

(v) Image Quilting (vi) Schödl

Detail Synthesis w/ Multiple Constraints
Novel Application:

1

2

Output O, iteration i Output O, iteration i+1

Constraint C

3

4

look up
neighborhood

search for matches

integrate patch
into output

Sources S

