Image Reconstruction (Comparisons)

> Todor Georgiev Adobe Photoshop

State of the art in Scratch Removal

- Inpainting (2000)

Poisson Image Editing (2003)
"Poisson Cloning/Blending"
same as Photoshop Healing Brush (2002)

Original

Selection to clone

Poisson Cloning

New selection to clone

Poisson Cloning

Retina / Cortex Adaptation to Illumination

- The image is *just a record* of pixel values.
- We do not see pixel values directly. *Adaptation*.
- What we see is *an illusion* generated from the above record through internal adaptation of the visual system.

Thanks to Jan Koenderink

Covariant Derivative = Perceptual Derivative

$$\frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial x} + A_x(x,y)$$
$$\frac{\partial}{\partial y} \rightarrow \frac{\partial}{\partial y} + A_y(x,y)$$

$$\frac{\Delta f}{f} - 2\frac{\operatorname{grad} f}{f} \cdot \frac{\operatorname{grad} g}{g} - \frac{\Delta g}{g} + 2\frac{(\operatorname{grad} g) \cdot (\operatorname{grad} g)}{g^2} = 0$$

Compare this to **Poisson equation**:

$$\triangle f(x,y) = \triangle g(x,y)$$

Both define gradient domain cloning. Which one is better?

Poisson cloning

Covariant cloning

Covariant

Poisson

Reconstruction Examples:

Original Damaged Area

Laplace

Poisson

Original

Laplace

Inpainting

Thanks to Guillermo Sapiro and Kedar Patwardhan

"Structure and Texture" Inpainting

Bertalmio - Vese - Sapiro - Osher method

Poisson

Covariant

Laplace

Inpainting

Structure and Texture Inpainting

Poisson

Covariant

Conclusion:

The covariant (adapted) derivative provides a way to perform *perceptual image processing* according to how images are *perceived* as opposed to - how images are *recorded* by a camera. It explicitly takes into account changes of retina sensitivity due to adaptation to illumination conditions.

Covariant (perceived) gradient domain.

Scratch Removal is only one application.